理学硕士学位论文
带有三个洞的球面的弧复形
中的距离
黄 晓 晓
哈尔滨工业大学
2008年6月
国内图书分类号:O189.21
国际图书分类号: 515.162
理学硕士学位论文
带有三个洞的球面的弧复形
中的距离
硕士研究生:黄 晓 晓
导师:雷 逢 春 教授
申 请 学 位 :理学硕士
学科、专业:基础数学
所在单位:数学系
答辩日期:2008年6月
授予学位单位:哈尔滨工业大学
Classified Index:O189.21
U.D.C.: 515.162
Dissertation for the Master Degree in Science
THE DISTANCE IN THE ARC COMPLEX FOR THE THREE HOLED SPHERE
Candidate:Huang Xiaoxiao
Supervisor:Professor Lei Fengchun Academic Degree Applied for:Master of Science
Specialty:Pure Mathematics
Affiliation:Department of Mathematics
Date of Defence:June, 2008
Degree-Conferring-Institution:Harbin Institute of Technology
哈尔滨工业大学理学硕士学位论文
-  -
I 摘要
近年来为了更好地利用Heegaard 距离来研究Heegaard 分解, 人们更多地从Heegaard 曲面的曲线复形的角度去看Heegaard 分解.
Masur 和Minsky 研究了曲线复形的许多特征. 特别的, 他们给出了紧致平环的曲线复形的定义并且研究了这种特殊曲线复形的一些拓扑及几何性质. 他们还证明了如下一个重要的结论: 假设A 是一个紧致的平环, 若,a b 为曲线复形C(A )中的任意两个顶点, 则有(,)1(,)c d a b i a b ≤+, 其中(,)i a b 为,a b 的内部相交数.
本文主要是研究带有三个洞的球面中的本质弧和这个曲面的弧复形中的距离. 假设P 是带有三个洞的球面, 本文先是研究了它当中的本质弧, 即不能同伦到P ∂上的弧. P 的三个边界分别设为1C , 2C , 3C , 取定两个特殊的定
点12,A C B C ∈∈, 连接,A B 的弧AB uuu r
我们用(,;0,0,0)A B 表示. 设A 为起点, B 为终点, 逆时针旋转为正方向, 顺时针旋转为负方向. 我们在1C , 2C , 3C 上都赋予正向, 则有以下两个结论:(1)任意一条端点分别是A , B 的弧均可以用(,;,,)A B m n k 来表示, 其中,m n ∈Z , 0,1k =或者1−. (2)任意一条以1,p C p A ∀∈≠为起点, 以2,q C q B ∀∈≠为终点的弧均可以用(,;,,)p q m n k 来唯一表示, 其中,m n ∈Z , 0,1k =或者1−.
接着本文将紧致平环中的曲线复形的定义推广到带有三个洞的球面P 上, 称这个曲线复形为曲面P 的弧复形, 用()A P 来表示, 我们研究这个弧复形中任意两个顶点之间的距离, 得到以下的结果:设P 是一个带有三个洞的球面, 若,a b 为()A P 中的任意两个顶点, 则有(,)4c d a b ≤.  最后我们给出一个(,)4c d a b
=的例子.
关键词 曲线复形; 弧复形; Heegaard 分解; Heegaard 距离
哈尔滨工业大学理学硕士学位论文
-  -
II Abstract
In recent years in order to use Heegaard distance to study Heegaard spitting well, we look at the splitting more from the point of view of the curve complex of the Heegaard surface.
Masur and Minsky studied various properties of the curve complex. In particular, they gave the definition of the curve complex for a compact annulus and they studied some topological and geometric properties of this special curve complex. They also proved an important result as follows: Assuming  A  is a compact annulus. If a  and b are distinct vertices of C(A ), then (,)1(,)c d a b i a b ≤+, where (,)i a b  is the interior intersection number of a  and b .
The main objective of this paper is to study the essential arcs of the three holed sphere and the dista
nce in the arc complex of this surface. Assuming P  is a sphere  with three holes. In this paper, firstly, we study the essential arcs that can not be homotoped into P ∂. Let 1C , 2C , 3C  be three boundaries of P . Take
two special fixed points 12,A C B C ∈∈ and we denote an arc AB uuu r
that connect A and B by (,;0,0,0)A B . Let A be a starting point, B be an ending point, counterclockwise rotation for the positive direction and clockwise rotation for the negative direction. We oriented 1C , 2C , 3C  the positive direction, then we
have two results: (1) For any arc with starting point A and ending point B, we can use (,;,,)A B m n k  to denote it, where ,m n ∈Z , 0,1k = or 1−. (2) For any arc with starting point 1,p C p A ∀∈≠ and ending point 2,q C q B ∀∈≠, we
can use (,;,,)p q m n k  to denote it, where ,m n ∈Z , 0,
1k = or 1−.  Secendly, we extend the definition of the curve complex for a compact annulus to a sphere with three holes. We call it arc complex of the surface P  and denote this special comlex by ()A P . We study the distance between any two vertices of ()A P  and then we have a result as follows: Assuming P  is a sphere
with three holes. If a  and b  are
seifert
distinct vertices of ()A P , then (,)4c d a b ≤.  Lastly, we give an example of (,)4c d a b =.  Key words  curve complex; arc complex; Heegaard spitting; Heegaard distance