abaqus的一些使用技巧——收藏专用
ABAQUS 简介
[1] (pp7)在[开始] →[程序] →[ABAQUS 6.5-1]→[ABAQUS COMMAND],DOS 提示符下输入命令Abaqus fetch job = 可以提取想要的算例input 文件。
ABAQUS 基本使用方法
[2](pp15)快捷键:Ctrl+Alt+左键来缩放模型;Ctrl+Alt+中键来平移模型;Ctrl+Alt+右键来旋转模型。②(pp16)ABAQUS/CAE 不会自动保存模型数据,用户应当每隔一段时间自己保存模型以避免意外丢失。
[3](pp17)平面应力问题的截面属性类型是Solid(实心体)而不是Shell(壳)。
ABAQUS/CAE 推荐的建模方法是把整个数值模型(如材料、边界条件、载荷等)都直接定义在几何模型上。
fetch最佳用法载荷类型Pressure 的含义是单位面积上的力,正值表示压力,负值表示拉力。
[4](pp22)对于应力集中问题,使用二次单元可以提高应力结果的精度。
[5](pp23)Dismiss 和Cancel 按钮的作用都是关闭当前对话框,其区别在于:前者出现在包含只读数据的对话框中;后者出现在允许作出修改的对话框中,点击Cancel 按钮可关闭对话框,而不保存所修改的内容。
[6](pp26)每个模型中只能有一个装配件,它是由一个或多个实体组成的,所谓的“实体”(instance)是部件(part)在装配件中的一种映射,一个部件可以对应多个实体。材料和截面属性定义在部件上,相互作用(interaction)、边界条件、载荷等定义在实体上,网格可以定义在部件上或实体上,对求解过程和输出结果的控制参数定义在整个模型上。
[7](pp26) ABAQUS/CAE 中的部件有两种:几何部件(native part)和网格部件(orphan mesh part)。
创建几何部件有两种方法:(1)使用Part 功能模块中的拉伸、旋转、扫掠、倒角和放样等特征来直接创建几何部件。(2)导入已有的CAD 模型文件,方法是:点击主菜单File→Import →Part。网格部件不包含特征,只包含节点、单元、面、集合的信息。创建网
格部件有三种方法:(1)导入ODB 文件中的网格。(2)导入INP 文件中的网格。(3)把几何部件转化为网格部件,方法是:进入Mesh 功能模块,点击主菜单Mesh→Create Mesh Part。
[8](pp31)初始分析步只有一个,名称是initial,它不能被编辑、重命名、替换、复制或删除。
(1)通用分析步(general 在初始分析步之后,需要创建一个或多个后续分析步,主要有两大类:
analysisstep)可以用于线性或非线性分析。常用的通用分析步包含以下类型:
—Static, General: ABAQUS/Standard 静力分析
—Dynamics, Implicit: ABAQUS/Standard 隐式动力分析
—Dynamics, Explicit: ABAQUS/ Explicit 显式动态分析
(2)线性摄动分析步(linear perturbation step)只能用来分析线性问题。在ABAQUS/Ex
plicit 中不能使用线性摄动分析步。在ABAQUS/Standard 中以下分析类型总是采用线性摄动分析步。
—Buckle: 线性特征值屈曲。
—Frequency: 频率提取分析。
—Modal dynamics: 瞬时模态动态分析。
—Random response: 随机响应分析。
—Response spectrum: 反应谱分析。
—Steady-state dynamics: 稳态动态分析。
[9](pp33)在静态分析中,如果模型中不含阻尼或与速率相关的材料性质,“时间”就没有实际的物理意义。为方便起见,一般都把分析步时间设为默认的1。每创建一个分析步,ABAQUS/CAE 就会自动生成一个该分析步的输出要求。
[10] (pp34)自适应网格主要用于ABAQUS/Explicit 以及ABAQUS/Standard 中的表面磨损过程模拟。在一般的ABAQUS/Standard 分析中,尽管也可设定自适应网格,但不会起到明显的作用。Step 功能模块中,主菜单Other→Adaptive Mesh Domain 和Other→Adaptive Mesh Controls 分别设置划分区域和参数。
[11](pp37)使用主菜单Field 可以定义场变量(包括初始速度场和温度场变量)。有些场变量与分析步有关,也有些仅仅作用于分析的开始阶段。使用主菜单Load Case 可以定义载荷状况。载荷状况由一系列的载荷和边界条件组成,用于静力摄动分析和稳态动力分析。[12](pp42)独立实体是对部件的复制,可以直接对独立实体划分网格,而不能对相应的部件划分网格。非独立实体是部件的指针,不能直接对非独立实体划分网格,而只能对相应的部件划分网格。由网格部件创建的实体都是非独立实体。
[13](pp45)Quad 单元(二维区域内完全使用四边形网格)和Hex 单元(三维区域内完全使用六面体网格)可以用较小的计算代价得到较高的精度,因此应尽可能选择这两种单元。
[14](pp45)结构化网格和扫掠网格一般采用Quad 单元和Hex 单元,分析精度相对较高。
因此优先选用这两种划分技术。使用自由网格划分技术时,一般来说,节点的位置会与种子的位置相吻合。使用结构化网格和扫掠网格划分技术时,如果定义了受完全约束的种子,划分可能失败。
[15](pp45)划分网格的两种算法:
中性轴算法(Medial Axis):
(1)中性轴算法(Medial Axis)更易得到单元形状规则的网格,但网格与种子的位置吻合得较差。
(2)在二维区域中,使用此算法时选择Minimize the mesh transition(最小化网格的过渡)可提高网格质量,但更容易偏离种子。当种子布置得较稀疏时,使用中性轴算法得到的单元形状更规则。
(3)如果在模型的一部分边上定义了受完全约束的种子,中性轴算法会自动为其他的边选择最佳的种子分布。
(4)中性轴算法不支持由CAD 模型导入的不精确模型和虚拟拓扑。
Advancing Front 算法
(1)网格可以与种子的位置很好地吻合,但在较窄的区域内,精确匹配每粒种子可能会使网格歪斜。
(2)更容易得到单元大小均匀的网格。有些情况下,单元均匀是很重要的,例如在ABAQUS/Explicit 中,网格中的小单元会限制增量步长。
(3)容易实现从粗网格到细网格的过渡。
(4)支持不精确模型和二维模型的虚拟拓扑。
[16](pp50)网格划分失败时的解决办法与网格划分失败的原因:
(1)几何模型有问题,例如模型中有自由边或很小的边、面、尖角、裂缝等。
(2)种子布置得太稀疏。
如果无法成功地划分Tet 网格,可以尝试以下措施:
(1)在Mesh 功能模块中,选择主菜单Tools→Query 下的Geometry Diagnostics,检查模型中是否有自由边、短边、小平面、小尖角或微小的裂缝。如果几何部件是由CAD 模型导入的,则应注意检查是否模型本身就有问题(有时可能是数值误差导致的);如果几何部件是在ABAQUS/CAE 中创建的,应注意是否在进行拉伸或切割操作时,由于几何坐标的误差,出现了上述问题。
(2)在Mesh 功能模块中,可以使用主菜单Tools→Virtual Topology(虚拟拓扑)来合并小的边或面,或忽略某些边或顶点。
(3)在Part 功能模块中,点击主菜单Tools→Repair,可以修复存在问题的几何实体。
(4)在无法生成网格的位置加密种子。
[17](pp51)网格质量检查
在Mesh 功能模块中,点击主菜单Mesh→Verify,可以选择部件、实体、几何区域或单元,
检查其网格的质量,获得节点和单元信息。在Verify Mesh 对话框,选择Statistical Checks
(统计检查)可以检查单元的几何形状,选择Analysis Checks(分析检查)可以检查分析过
程中会导致错误或警告信息的单元。单击Highlight 按钮,符合检查判据的单元就会以高亮
度显示出来。
[18](pp51)单元类型
ABAQUS 拥有433 种单元,分8 大类:连续体单元(continuum element,即实体单元solidelement、壳单元、薄膜单元、梁单元、杆单元、刚体单元、连接单元和无限元。
(1)线性单元(即一阶单元);二次单元(即二阶单元);修正的二次单元(只有Tri 或Tet