活性氧与肿瘤关系的研究进展
李瑾综述,刘炯审校
[摘要]活性氧(ROS)主要是细胞线粒体电子传递链产生的一些性质活泼的含氧物质。肿瘤相关基因可能会诱导活性氧的产生,继而激活与肿瘤发生发展相关的信号通路。ROS因为浓度的不同,对细胞也具有不同的作用。肿瘤细胞出现原因是细胞在分裂、增殖的过程中基因发生突变,ROS则会促进这一过程。而细胞死亡的原因是ROS导致细胞DNA、蛋白质、脂质的损伤。文章主要从ROS的生成与清除、ROS的致癌作用、ROS的抑癌作用等方面进行综述。
[关键词]活性氧;肿瘤;凋亡
[中图分类号]R73[文献标志码]A[文章编号]1672-271X(2019)03-0297-05
[DOI]10.3969/j.issn.1672-271X.2019.03.016
Progress study of reactive oxygen species and tumor
LI Jin1reviewing,LIU Jiong2checking
(1.Bengbu Medical College,Bengbu233003,Anhui,China;2.Department of Gastroenterology,General Hospital of Eastern Theater Command,PLA,Nanjing210002,Jiangsu,China)
[Abstract]Reactive oxygen species(ROS)is the general name for the active oxygen metabolites that the mainly production from electron transport chain.Tumor-associated genes may induce the production of ROS,which in turn activate the signal pathways involved in tumor development.ROS promotes cell mitosis and proliferation,increases genomic instability and induces tumorigenesis and development.However,the high concentration of ROS causes the damage of DNA,protein and lipid,eventually leading to cell death.This article reviews the generation and clearance,the carcinogenic effect,and the anti-cancer effect of ROS.
[Key words]reactive oxygen species;tumor;apoptosis
0引言
活性氧(reactive oxygen species,ROS)是包含氧分子(dioxygen,O2)、超氧阴离子(superoxide anion,O-2)、过氧化氢(hydrogen peroxide,H2O2)、羟自由基(hydroxyl radical,HO•)等性质活泼的物质,主要来源于细胞线粒体电子传递链。研究发现,ROS会增加细胞基因发生突变的风险,但ROS又会引起DNA、蛋白质、脂质的损伤,导致细胞死亡[1]。本文主要就ROS与肿瘤的关系作一综
述。
1ROS的生成与清除
电子在线粒体呼吸链酶的作用下形成O2,随后与NADPH作用生成O-2,O-2通过电子呼吸链复合体进入线粒体,或通过阴离子通道进入细胞质,而超氧化物歧化酶(superoxide dismutase,SOD)则会将O-2还原成H2O2,之后通过芬顿反应,H2O2生成HO•。ROS除线粒体电子传递链,其他途径也可产生,如
细胞素P450途径、氧化磷酸化途径等。ROS的清除主要依靠酶,如过氧化物酶、过氧化氢酶(catalase,CAT)、还原型谷胱甘肽(reduced glutathione,GSH)、谷胱甘肽过氧化物酶(glutathi‐one peroxidase,GPX)、抗氧化蛋白等。GPX及CAT
综述
作者单位:233033蚌埠,蚌埠医学院(李瑾);210002南京,东部战区总医院(原南京军区南京总医院)消化内科
(刘炯)
通信作者:刘炯,E-mail:liujiong64@sohu
都可将H2O2还原为H2O,但还原的过程却互不相同,GPX是在还原GSH的过程中将H2O2变成H2O[2],而CAT则直接将H2O2还原成H2O,不需要任何辅助因子。红系衍生的核因子2相关因子(nuclear factor [erthroid-derived2]-like2,NRF2)因为ROS氧化接头蛋白失活而趋向稳定,导致抗氧化蛋白增加[3],从而清除部分ROS。
2ROS的致癌作用
早期临床实验表明,晚期肿瘤患者通过静脉注射维生素C取得了较好的效果,因此猜测ROS 升高可能会导致肿瘤的发生[4]。之后更多的实验研究进一步支持了ROS促进肿瘤发生的观点,如结肠癌患者中氧化损伤产物升高,抗氧化酶明显降低[5]。
2.1ROS升高的致癌作用
2.1.1相关基因调控ROS的产生p53基因与ROS。实验证明,p53功能缺失后会升高ROS水平,促进小鼠胰腺癌的生长[6]。p53主要通过控制一些调节ROS代谢酶的表达来调节ROS,从而调节细胞的氧化还原能力来抑制肿瘤的生长。如NADPH可增加GSH来降低ROS的水平,而p53则会加快产生NADPH的磷酸戊糖途径[7]。p53也可通过增加细胞表面的巯基及细胞内的GSH、SOD水平来降低ROS 的水平
[8]。p53抗氧化功能还包括上调GPX1、NRF2,以及维持线粒体结构功能正常,从而限制ROS的产生[9]。因此,当p53发生突变时,ROS水平升高,促进了肿瘤的发生。
K-Ras基因与ROS。K-Ras基因通过促进NADPH氧化酶(NOX)的组分p47phox与胞膜组分p22phox结合,激活NADPH氧化酶,生成ROS,诱导肿瘤的发生,但CAT则会阻断这一途径,抑制肿瘤的发生[10]。有实验支持,K-Ras基因通过激活NOX 产生ROS,促进肿瘤细胞的生成,但NOX抑制剂的阻断使得肿瘤细胞死亡[11]。此外,K-Ras被激活后可上调miR-155,使得调节SOD2及CAT生成的转录因子FOXO3a失去了其正常的转录活性,从而促进ROS的产生,诱导细胞增殖与转化[12]。
线粒体去乙酰化酶3(NAD-denpendent deacety‐lase sirtuin-3,SIRT3)基因及其他基因与ROS。SIRT3基因作为抑癌基因,敲除SIRT3的小鼠形成了乳腺肿瘤,原因可能是SIRT3的缺失通过抗氧化途径及相关代谢,增加了ROS的水平,从而导致基因组及线粒体DNA的不稳定[13-15]。除上述的基因外,在编码乳腺癌1(Brca1)缺陷型乳腺癌的小鼠模型中,ROS的产生可增加DNA损伤并促进肿瘤的发生[16]。在白血病干细胞中,癌基因BCR-ABL的表达产物可诱导ROS产生[16]。
2.1.2ROS参与的相关信号通路活化的磷脂酰肌醇3激酶(phosphatidylinositol3-kinase,PI3K)/蛋白激酶B(protein kinase B,AKT)信号通路会促进细胞增殖与存活。抑癌基因PTEN的半胱氨酸残基由于H2O2的氧化而失活,PI3K/AKT信号通路就被失活的PTEN激活,随后一方面激活NOX;一方面使FOXO3a磷酸化,磷酸化的FOXO3a不能进行正常的
转录;一方面糖原合成酶激酶-3β(glycogen synthase kinase-3β,GSK-3β)会抑制丙酮酸脱氢酶及α-酮戊二酸脱氢酶复合体,降低ROS的产生,而激活的信号通路促使GSK-3β发生磷酸化,使之活性降低,这些促进ROS的生成,易于癌细胞生长[18-20]。研究表明,对于Brca1缺陷型乳腺癌,过量表达的PTEN会抑制PI3K/AKT信号通路,降低癌细胞对ROS耐受的阈值,到达的作用[21]。
IL-6/信号转导与转录激活因子3(signal trans‐ducer and activator of transcription3,STAT3)信号通路参与了肿瘤的发生与发展过程,细胞因子信号转导抑制蛋白3(suppressors of cytokine signaling3,SOCS3)可负性调节IL-6/STAT3,从而抑制肿瘤的生长。实验证明,HBV可诱导ROS的产生,积累的ROS介导Snail与SOCS3结合,抑制SOCS3的表达,继而激活IL-6/STAT3信号通路,促进肿瘤的发生[22]。此外,IL-6与NOX4相互促进各自的表达,导致NOX4/AKT与IL-6/STAT3两种信号通路之间也存在相互促进的作用,最终促进癌细胞的增殖与存活[23]。
2.1.3其他方式在肿瘤发生发展的其他方式中,影响细胞周期的表皮细胞生长因子及细胞周期调节分子均可被升高的ROS激活。另外,缺氧诱导因子、血管内皮生长因子及肿瘤微环境中的MMP-1均可被ROS刺激,促进肿瘤血管的生成[24-25]。
2.2ROS降低的致癌作用虽然ROS能促进肿瘤细胞的增殖及转移,但也有研究表明,抗氧化剂,如维生素E、抗氧化剂NAC等可能因为ROS减少及DNA损伤,反而会促进小鼠肿瘤的发生[26]。
2.2.1相关基因调控ROS的产生SIRT3基因与ROS。前文叙述了SIRT3作为抑癌基因的作用。作为原癌基因,SIRT3可能通过直接或间接去乙酰化FOXO3a来调节MnSOD及CAT[27-28],还可能通过ECT、三羧酸循环等途径来调节线粒体功能[29],降低ROS水平,从而加快肿瘤的进展。
TIGAR基因与ROS。研究表明,在乳腺癌和肺癌中发现GSH的水平增加[26,30]。作为与细胞内氧化还原反应密切相关的GSH,其合成通过两步酶促反应完成。首先,谷氨酸和半胱氨酸在谷氨酸-半胱氨酸连接酶的催化下,形成γ-谷氨酰半胱氨酸。之后,2个甘氨酸与γ-谷氨酰半胱氨酸由于谷胱甘肽合成酶的催化形成GSH。调节糖代谢的基因TIGAR 可维持GSH水平,而TIGAR的缺失会抑制癌细胞的增殖与存活,即ROS降低会促进癌细胞的增殖与存活[31]。
2.2.2CD44/GSH信号通路CD44是一种黏附分子,与肿瘤具有密切关系,其降低ROS的主要途径就是通过变异型CD44与谷氨酸-胱氨酸转运子xCT 亚基相互作用并使其稳定,从而增加胞内GSH的含量,降低ROS的水平,保护肿瘤干细胞抵御ROS的损伤效应,促进肿瘤增殖、转移及耐药[32]。此外,丙酮酸激酶M2(glycolytic enzyme pyruvate kinase M2,PKM2)是糖酵解过程中的限制酶,实验表明当其活性受到抑制后可促进肿瘤的形成[33]。PKM2的表达和活性的降低可促进NADPH的产生,降低ROS。而CD44可使PKM2发生磷酸化来降低其活性,促进糖酵解过程,增加肿瘤细胞的抗氧化能力[34]。
reactive oxygen species是什么意思
3ROS的抑癌作用
ROS不仅有利于肿瘤的发展,而且还能诱导肿瘤细胞的死亡。实验证明,黑素瘤细胞的生长与转移可以被ROS抑制[35]。p38MAPK通路是丝裂原活化蛋白激酶MAPK(mitogen-activated protein ki‐nase,MAPK)家族中的一部分,参与了细胞多种信号传导的过程。实验证明,ROS水平增高激活p38 MAPK通路,缩短了造血干细胞的寿命,而使用抗氧化剂或抑制p38MAPK的活性可延长细胞生命[36]。这说明,ROS激活p38MAPK途径会诱导细胞凋亡。在神经胶质瘤细胞中,ROS激活p38MAPK在FOXO3的激活和Bmi1蛋白质降解过程中起主要作
用,激活的FOXO3会促进细胞由未分化转变至分化状态,Bmi1的降解则会导致细胞自我更新能力的丧失[37-38]。因此,氧化应激可通过激活ROS-p38MAPK 通路来阻断胶质瘤细胞的干细胞样功能。
ROS可通过激活细胞凋亡信号调节激酶(apop‐tosis signal-regulating kinase1,ASK1)/c-JunA氨基末端激酶(c-Jun N-terminal kinase,JNK)信号通路诱导细胞的衰老和死亡。H2O2可氧化硫氧还蛋白-1(thioredoxin,TRX1)半胱氨酸残基,使与TRX1结合的ASK1活化,活化的ASK1又依次激活JNK和p38 MAPK激酶途径,抑制抗凋亡因子,促使细胞凋亡[39]。实验证明,在小鼠B淋巴瘤细胞中,膜免疫球蛋白诱导H2O2产生后激活ASK1/JNK途径,导致细胞凋亡[40]。
4ROS与肿瘤的
ROS对于肿瘤来说是既是矛也是盾,ROS的水平不同对细胞的影响不同。因此,对于肿瘤可通过调节ROS的水平来达到的目的。许多肿瘤的药物作用主要分为增加ROS及抑制抗氧化酶来诱导细胞死亡。如黄连素会通过增加ROS的水平,损伤线粒体功能,诱导乳腺癌细胞凋亡[41]。吉西他滨和素的联合应用通过ROS介导的细胞自噬抑制胰腺癌增长[42]。2-ME可抑制超氧化物歧化酶活性,通过多种途径介导细胞凋亡[43]。丁硫氨酸亚砜胺减少谷胱甘肽合成酶的表达,以磷脂酰肌醇3激酶依赖性方式抑制肿瘤[44]。
5结语
实验证明,人胃癌组织细胞的增殖、凋亡及ROS水平明显高于正常组织细胞,由此可见,ROS升高既会促进肿瘤的形成,也会促进其凋亡[45]。也有实验表明,低水平ROS有促进鼻咽癌细胞生长,而高水平ROS具会促进鼻咽癌细胞的凋亡[46]。临床上很多方法将ROS作为肿瘤的方法,如、顺铂等,但超过了ROS的水平就有可能会引起全身毒性作用。因此,ROS对于临床肿瘤来说既是朋友也是敌人,既会促进肿瘤的发生发展,又可作为肿瘤的手段。为利用ROS取得具有安全有效、特异性及靶向性的临床策略,需要掌握肿瘤细胞生长和存活所需的ROS来源、
水平、参与的特定信号传导通路。
[参考文献]
[1]Lau AT,Wang Y,Chiu JF.Reactive oxygen species:current knowledge and applications in cancer research and therapeutic
[J].J Cell Biochem,2008,104(2):657-667.
[2]Couto N,Wood J,Barber J.The role of glutathione reductase and related enzymes on cellular redox homoeostasis network[J].
Free Radic Biol Med,2016,95:27-42.
[3]Woo HA,Yim SH,Shin DH,et al.Inactivation of peroxiredox‐in I by phosphorylation allows localized H2O2accumulation for
cell signaling[J].Cell,2010,140(4):517-528.
[4]Szatrowski TP,Nathan CF.Production of large amounts of hy‐drogen peroxide by human tumor cells[J].Cancer Res,1991,
51(3):794-798.
[5]常东,赵亚双,潘洪志.结直肠癌患者体内氧化应激状态的评价及产物的分析[J].医学研究生学报,2009,22(10):
1039-1041.
[6]Wörmann SM,Song L,Ai J,et al.Loss of P53Function Acti‐vates JAK2-STAT3Signaling to Promote Pancreatic Tumor
Growth,Stroma Modification,and Gemcitabine Resistance in
Mice and Is Associated With Patient Survival[J].Gastroenterolo‐
gy,2016,151(1):180-193.
[7]Kruiswijk F,Labuschagne CF,Vousden KH.p53in survival,death and metabolic health:a lifeguard with a licence to kill[J].
Nat Rev Mol Cell Biol,2015,16(7):393-405.
[8]Banerjee A,Thyagarajan K,Chatterjee S,et al.Lack of p53 augments antitumor functions in cytolytic T Cells[J].Cancer
Res,2016,76(18):5229-5240.
[9]Budanov AV,Karin M.p53target genes sestrin1and sestrin2 connect genotoxic stress and mTOR signaling[J].Cell,2008,
134(3):451-460.
[10]Park MT,Kim MJ,Suh Y,et al.Novel signaling axis for ROS generation during K-Ras-induced cellular transformation[J].
Cell Death Differ,2014,21(8):1185-1197.
[11]Wang P,Sun YC,Lu WH,et al.Selective killing of K-ras-transformed pancreatic cancer cells by targeting NAD(P)H oxi‐
dase[J].Chin J Cancer,2015,34(4):166-176.
[12]Wang P,Zhu C,Ma M,et al.Micro-RNA-155is induced by K-Ras oncogenic signal and promotes ROS stress in pancreatic can‐
cer[J].Oncotarget,2015,6(25):21148-21158.
[13]Cerami E,Gao J,Dogrusoz U,et al.The cBio cancer genomics portal:an open platform for exploring multidimensional cancer
genomics data[J].Cancer Discov,2012,2(5):401-404.[14]Gao J,Aksoy BA,Dogrusoz U,et al.Integrative analysis of complex cancer genomics and clinical profiles using the cBioPor‐
tal[J].Sci Signal,2013,6(269):pl1.
[15]Yu W,Denu RA,Krautkramer KA,et al.Loss of SIRT3pro‐
vides growth advantage for B cell malignancies[J].J Biol Chem,
2016,291(7):3268-3279.
[16]Li M,Chen Q,Yu X.Chemopreventive effects of ROS targeting in a murine model of BRCA1-deficient breast cancer[J].Cancer
Res,2017,77(2):448-458.
[17]Capala ME,Pruis M,Vellenga E,et al.Depletion of SAM50 Specifically Targets BCR-ABL-Expressing Leukemic Stem and
Progenitor Cells by Interfering with Mitochondrial Functions[J].
Stem Cells Dev,2016,25(5):427-437.
[18]Nakanishi A,Wada Y,Kitagishi Y,et al.Link between PI3K/ AKT/PTEN pathway and NOX proteinin diseases[J].Aging
Dis,2014,5(3):203-211.
[19]Yousefi B,Samadi N,Ahmadi Y.Akt and p53R2,partners that dictate the progression and invasiveness of cancer[J].DNA Re‐
pair(Amst),2014,22:24-29.
[20]Koundouros N,Poulogiannis G.Phosphoinositide3-Kinase/Akt Signaling and Redox Metabolism in Cancer[J].Front Oncol,
2018,8:160.
[21]Gorrini C,Gang BP,Bassi C,et al.Estrogen controls the sur‐vival of BRCA1-deficient cells via a PI3K-NRF2-regulated path‐
way[J].Proc Natl Acad Sci USA,2014,111(12):4472-4477.[22]Yuan K,Lei Y,Chen HN,et al.HBV-induced ROS accumula‐tion promotes hepatocarcinogenesis through Snail-mediated epi‐
genetic silencing of SOCS3[J].Cell Death Differ,2016,23
(4):616-627.
[23]Li J,Lan T,Zhang C,et al.Reciprocal activation between IL-6/ STAT3and NOX4/Akt signalings promotes proliferation and sur‐
vival of non-small cell lung cancer cells[J].Oncotarget,2015,6
(2):1031-1048.
[24]Cho KH,Choi MJ,Jeong KJ,et al.A ROS/STAT3/HIF‐1αsig‐naling cascade mediates EGF‐induced TWIST1expression and
prostate cancer cell invasion[J].The Prostate,2014,74(5):
528-536.
[25]Sinnberg T,Noor S,Venturelli S,et al.The ROS‐induced cyto‐toxicity of ascorbate is attenuated by hypoxia and HIF‐1alpha in
the NCI60cancer cell lines[J].J Cell Mol Med,2014,18(3):
530-541.
[26]Sayin VI,Ibrahim MX,Larsson E,et al.Antioxidants acceler‐ate lung cancer progression in mice[J].Sci Transl Med,2014,6
(221):221ra15.
[27]Torrens-Mas M,Pons DG,Sastre-Serra J,et al.SIRT3silenc‐ing sensitizes breast cancer cells to cytotoxic treatments through
an increment in ROS production[J].J Cell Biochem,2017,118
(2):397-406.
[28]Rangarajan P,Karthikeyan A,Lu J,et al.Sirtuin3regulates Foxo3a-mediated antioxidant pathway in microglia[J].Neurosci‐
ence,2015,311:398-414.
[29]Jiang L,Kon N,Li T,et al.Ferroptosis as a p53-mediated ac‐tivity during tumour suppression[J].Nature,2015,520
(7545):57-62.
[30]Harris IS,Treloar AE,Inoue S,et al.Glutathione and thiore‐doxin antioxidant pathways synergize to drive cancer initiation
and progression[J].Cancer Cell,2015,27(2):211-222.[31]Wanka C,Steinbach JP,Rieger J.Tp53-induced glycolysis and apoptosis regulator(TIGAR)protects glioma cells from starva‐
tion-induced cell death by up-regulating respiration and improv‐
ing cellular redox homeostasis[J].J Biol Chem,2012,287
(40):33436-33446.
[32]Ishimoto T,Nagano O,Yae T,et al.CD44variant regulates re‐dox status in cancer cells by stabilizing the xCT subunit of sys‐
tem xc−and thereby promotes tumor growth[J].Cancer cell,
2011,19(3):387-400.
[33]Israelsen WJ,Dayton TL,Davidson SM,et al.PKM2isoform-specific deletion reveals a differential requirement for pyruvate
kinase in tumor cells[J].Cell,2013,155(2):397-409.[34]Tamada M,Nagano O,Tateyama S,et al.Modulation of glucose metabolism by CD44contributes to antioxidant status and drug
resistance in cancer cells[J].Cancer Res,2012,72:1438-
1448.
[35]Herraiz C,Calvo F,Pandya P,et al.Reactivation of p53by a Cytoskeletal Sensor to Control the Balance Between DNA Dam‐
age and Tumor Dissemination[J].J Natl Cancer Inst,2016,108
(1):djv289.
[36]Liou GY,Storz P.Reactive oxygen species in cancer[J].Free Radic Res,2010,44(5):479-496.
[37]Sato A,Okada M,Shibuya K,et al.Pivotal role for ROS activa‐tion of p38MAPK in the control of differentiation and tumor-ini‐
tiating capacity of glioma-initiating cells[J].Stem Cell Res,
2014,12(1):119-131.
[38]Bigarella CL,Liang R,Ghaffari S.Stem cells and the impact of
ROS signaling[J].Development,2014,141(22):4206-4218.[39]Nishida T,Hattori K,Watanabe K.The regulatory and signal‐ing mechanisms of the ASK family[J].Adv Biol Regul,2017,
66:2-22.
[40]Furuhata M,Takada E,Noguchi T,et al.Apoptosis signal-reg‐ulating kinase(ASK)-1mediates apoptosis through activation of
JNK1following engagement of membrane immunoglobulin[J].
Exp Cell Res,2009,315(20):3467-3476.
[41]谢娟,黄新艳,许银燕,等.黄连素诱导人乳腺癌MCF-7细胞凋亡及其相关的氧化应激机制[J].医学研究生学报,
2012,25(2):135-139.
[42]Donadelli M,Dando I,Zaniboni T,et al.Gemcitabine/cannabi‐noid combination triggers autophagy in pancreatic cancer cells
through a ROS-mediated mechanism[J].Cell Death Dis,2011,
2(4):e152.
[43]Zhang Q,Ma Y,Cheng YF,et al.Involvement of reactive oxy‐gen species in2-methoxyestradiol-induced apoptosis in human
neuroblastoma cells[J].Cancer Lett,2011,313(2):201-210.[44]Cerioni L,Fiorani M,Azzolini C,et al.A moderate decline in U937cell GSH levels triggers PI3kinase/Akt-dependent Bad
phosphorylation,thereby preventing an otherwise prompt apop‐
totic response[J].Pharmacol Res,2012,65(3):379-386.[45]赵一兵,杨宏宇,陈国玉.胃癌细胞中活性氧的变化及意义[J].东南大学学报(医学版),2007,26(1):70-71.
[46]李红艳,黄健,梁斌,等.不同剂量柚皮素介导的促氧化作用及其对CNE2细胞生长的调控[J].医学研究生学报,
2014,27(4):361-367.
(收稿日期:2018‐10‐19;修回日期:2018‐12‐11)
(责任编辑:刘玉巧;英文编辑:朱一超)