现有确诊人数的计算方法公式
疾病处于爆发初期,意味着传染倍乘系数已经超过1。根据疾病传染周期长度以及感染人数增幅,则可以大致估算传染倍乘系数。
根据当地卫健委公布的数据,武汉累计确诊病例数到2019年12月31日为27人,到2020年1月3日为44人,到1月5日为59人,到1月20日上升为258人。根据报道,目前新型冠状病毒肺炎的潜伏期平均为7天,最多为14天。假设在潜伏期结束后,病人出现症状并视为疑似病例而被立即隔离,那么平均传染期为7天。
也就是说,从2019年12月31日到2020年1月20日,一共20天时间,即20/7=2.86个传染周期,报告的累计感染病例数从27人增长到258人。使用数值方法求解方程(r^(2.86+1)-1)/(r-1) = 258/27,可以得出r = 1.692。那么这种方法是否可能低估传染倍乘系数呢?这可以从几个因素来思考。
首先,报告人数未必准确。但考虑到1月20日相比于去年年末,卫生机构对病例的重视以及检测手段的更新,都应该更容易提升患者被报告的概率,所以这段时间里,累计病例数的实际增长倍数应该不会高于报告增长倍数。在此意义上,使用报告病例增长倍数应该是高估而非低估传染倍乘系数r。
其次,上述估算中假设自去年年末以来,传染倍乘系数是固定的,但由于政策和舆论的影响,官方和市民的防护措施会随时间加强的,所以可以合理假设传染倍乘系数随时间在降低。那么,在假设倍乘系数恒定的条件下来估算,应该也是高估,而非低估当下的传染倍乘系数。
31个省区市报告新增确诊病例
第三,感染者的传染期不止包括潜伏者,也包括症状出现后的患病期,而且在症状出现后传染的概率甚至会增大。因此,我们以7天潜伏期来代替整个传染
周期,会降低20天内的感染周期数K,从而低估倍乘系数。但我们真正关心的并不是疾病爆发初期的传染倍乘系数,而是在控制以后倍乘系数的变化。由于目前感染者潜伏期过后出现症状,一般会判断为疑似病例而被隔离。因此,以潜伏期来作为传染周期长度,适合于估算在采用严格防控手段以后的感染倍乘系数。
最后,上述估算只使用了2019年12月31日和2020年1月20日的数据。实际上,使用这两个时间点之间的有效数据得出的对倍乘系数r的估值会更小一些。而在1月20日之后,我们只见到湖北省的数据,却没见到单独有关武汉的数据。再者,在1月20日之后,由于重视程度突然提升可能大幅增加感染者被报告的概率,降低之后数据与之前数据缺乏可比性。因此,使用1月20日和之前的数据虽然也会高估传染倍乘系数r,但也不至于高估太多。尽管根据保守原则,我们宁愿高估而非低估传染倍乘系数,但太过高估并不可取。
如果病例数据报告方式一直稳定,那么即使数据中存在系统偏差,报告病例数在不同时间也是可比的,所以依然可以使用病例数随时间的变化幅度来合理地估算传染倍乘系数。我们目前的估算只使用了两个数据点,估算结果的置信程度偏低。如果使用更多时间点的数据,可以对感染现状得到更高置信水平的
估算,也可以对其趋势做出适当的推测。但遗憾的是,在这次疫情的控制方面,武汉市的应对措施大起大落,市卫健委公布甚至自相矛盾。比如,累计病例数在1月10日降为为41例,比1月5日的59例还少,而且这个41的病例数一直维持到1月15日都未予更新。这些不专业的做法人为增添了了解疫情的困难。