前言
  随着高校的持续扩张,每年应届毕业生的数目都在不断增长,伴随而来的是应届毕业生的就业压力也越来越大。
  在这样的背景下,就业变成一个买方市场的趋势越来越明显。为了到一个称心的工作,绝大多数应届毕业生都必须反复经历简历筛选、电话面试、笔试、面试等环节。在这些环节中,面试无疑起到最为重要的作用,因为通过面试公司能够最直观的了解学生的能力。
  为了有效地准备面试,面经这个新兴概念应运而生。笔者在当初工作阶段也从面经中获益匪浅并最终到满意的工作。为了方便后来者,笔者花费大量时间收集并整理散落在茫茫网络中的面经。不同行业的面经全然不同,笔者从自身专业出发,着重关注程序员面试的面经,并从精选出若干具有代表性的技术类的面试题展开讨论,希望能给读者带来一些启发。
  由于笔者水平有限,给各面试题提供的思路和代码难免会有错误,还请读者批评指正。另外,热忱欢迎读者能够提供更多、更好的面试题,本人将感激不尽。
(01)把二元查树转变成排序的双向链表
   [折叠]
  题目:输入一棵二元查树,将该二元查树转换成一个排序的双向链表。要求不能创建任何新的结点,只调整指针的指向。
  比如将二元查树
                                            10
                                          /    \
                                        6      14
                                      /  \    /  \
                                    4    8  12    16
转换成双向链表
4=6=8=10=12=14=16
  分析:本题是微软的面试题。很多与树相关的题目都是用递归的思路来解决,本题也不例外。下面我们用两种不同的递归思路来分析。
  思路一:当我们到达某一结点准备调整以该结点为根结点的子树时,先调整其左子树将左子树转换成一个排好序的左子链表,再调整其右子树转换右子链表。最近链接左子链表的最右结点(左子树的最大结点)、当前结点和右子链表的最左结点(右子树的最小结点)。从树的根结点开始递归调整所有结点。
  思路二:我们可以中序遍历整棵树。按照这个方式遍历树,比较小的结点先访问。如果我们每访问一个结点,假设之前访问过的结点已经调整成一个排序双向链表,我们再把调整当前结点的指针将其链接到链表的末尾。当所有结点都访问过之后,整棵树也就转换成一个排序双向链表了。
参考代码:
首先我们定义二元查树结点的数据结构如下:
    struct BSTreeNode // a node in the binary search tree
    {
    int          m_nValue; // value of node
    BSTreeNode  *m_pLeft;  // left child of node
    BSTreeNode  *m_pRight; // right child of node
    };
思路一对应的代码:
///////////////////////////////////////////////////////////////////////
// Covert a sub binary-search-tree into a sorted double-linked list
// Input: pNode - the head of the sub tree
//        asRight - whether pNode is the right child of its parent
// Output: if asRight is true, return the least node in the sub-tree
//        else return the greatest node in the sub-tree
///////////////////////////////////////////////////////////////////////
BSTreeNode* ConvertNode(BSTreeNode* pNode, bool asRight)
{sortedlist
    if(!pNode)
        return NULL;
    BSTreeNode *pLeft = NULL;
    BSTreeNode *pRight = NULL;
    // Convert the left sub-tree
    if(pNode->m_pLeft)
        pLeft = ConvertNode(pNode->m_pLeft, false);
    // Connect the greatest node in the left sub-tree to the current node
    if(pLeft)
    {
        pLeft->m_pRight = pNode;
        pNode->m_pLeft = pLeft;
    }
    // Convert the right sub-tree
    if(pNode->m_pRight)
        pRight = ConvertNode(pNode->m_pRight, true);
    // Connect the least node in the right sub-tree to the current node
    if(pRight)
    {
        pNode->m_pRight = pRight;
        pRight->m_pLeft = pNode;
    }
    BSTreeNode *pTemp = pNode;
    // If the current node is the right child of its parent, 
    // return the least node in the tree whose root is the current node
    if(asRight)
    {
        while(pTemp->m_pLeft)
            pTemp = pTemp->m_pLeft;
    }
    // If the current node is the left child of its parent, 
    // return the greatest node in the tree whose root is the current node
    else
    {
        while(pTemp->m_pRight)
            pTemp = pTemp->m_pRight;
    }
 
    return pTemp;
}
///////////////////////////////////////////////////////////////////////
// Covert a binary search tree into a sorted double-linked list
// Input: the head of tree
// Output: the head of sorted double-linked list
///////////////////////////////////////////////////////////////////////
BSTreeNode* Convert(BSTreeNode* pHeadOfTree)
{
    // As we want to return the head of the sorted double-linked list,
    // we set the second parameter to be true
    return ConvertNode(pHeadOfTree, true);
}
思路二对应的代码:
///////////////////////////////////////////////////////////////////////
// Covert a sub binary-search-tree into a sorted double-linked list
// Input: pNode -          the head of the sub tree
//        pLastNodeInList - the tail of the double-linked list
///////////////////////////////////////////////////////////////////////
void ConvertNode(BSTreeNode* pNode, BSTreeNode*& pLastNodeInList)
{
    if(pNode == NULL)
        return;
    BSTreeNode *pCurrent = pNode;
    // Convert the left sub-tree
    if (pCurrent->m_pLeft != NULL)
        ConvertNode(pCurrent->m_pLeft, pLastNodeInList);
    // Put the current node into the double-linked list
    pCurrent->m_pLeft = pLastNodeInList; 
    if(pLastNodeInList != NULL)
        pLastNodeInList->m_pRight = pCurrent;
    pLastNodeInList = pCurrent;
    // Convert the right sub-tree
    if (pCurrent->m_pRight != NULL)
        ConvertNode(pCurrent->m_pRight, pLastNodeInList);
}
///////////////////////////////////////////////////////////////////////