顾名思义,贪心算法总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。当然,希望贪心算法得到的最终结果也是整体最优的。虽然贪心算法不能对所有问题都得到整体最优解,但对许多问题它能产生整体最优解。如单源最短路经问题,最小生成树问题等。在一些情况下,即使贪心算法不能得到整体最优解,其最终结果却是最优解的很好近似。
活动安排问题就是要在所给的活动集合中选出最大的相容活动子集合,是可以用贪心算法有效求解的很好例子。该问题要求高效地安排一系列争用某一公共资源的活动。贪心算法提供了一个简单、漂亮的方法使得尽可能多的活动能兼容地使用公共资源。
设有n个活动的集合E={1,2,…,n},其中每个活动都要求使用同一资源,如演讲会场等,而在同一时间内只有一个活动能使用这一资源。每个活动i都有一个要求使用该资源的起始时间si和一个结束时间fi,且si <fi 。如果选择了活动i,则它在半开时间区间[si, fi)内占用资源。若区间[si, fi)与区间[sj, fj)不相交,则称活动i与活动j是相容的。也就是说,当si≥fj或sj≥fi时,活动i与活动j相容。
template<class Type>
void GreedySelector(int n, Type s[], Type f[], bool A[])
{
      A[1]=true;
      int j=1;
      for (int i=2;i<=n;i++) {
          if (s[i]>=f[j]) { A[i]=true; j=i; }
          else A[i]=false;
          }
}
由于输入的活动以其完成时间的非减序排列,所以算法greedySelector每次总是选择具有最早完成时间的相容活动加入集合A中。直观上,按这种方法选择相容活动为未安排活动留下
尽可能多的时间。也就是说,该算法的贪心选择的意义是使剩余的可安排时间段极大化,以便安排尽可能多的相容活动。
            算法greedySelector的效率极高。当输入的活动已按结束时间的非减序排列,算法只需O(n)的时间安排n个活动,使最多的活动能相容地使用公共资源。如果所给出的活动未按非减序排列,可以用O(nlogn)的时间重排。
由于输入的活动以其完成时间的非减序排列,所以算法greedySelector每次总是选择具有最早完成时间的相容活动加入集合A中。直观上,按这种方法选择相容活动为未安排活动留下尽可能多的时间。也就是说,该算法的贪心选择的意义是使剩余的可安排时间段极大化,以便安排尽可能多的相容活动。
            算法greedySelector的效率极高。当输入的活动已按结束时间的非减序排列,算法只需O(n)的时间安排n个活动,使最多的活动能相容地使用公共资源。如果所给出的活动未按非减序排列,可以用O(nlogn)的时间重排。
例:设待安排的11个活动的开始时间和结束时间按结束时间的非减序排列如下:
i
1
2
3
4
5
6
7
8
9
10
11
S[i]
1
3
0
5
3
5
6
8
8
2
12
f[i]
4
5
6
7哈夫曼编码树的带权路径长度
8
9
10
11
12
13
14
算法greedySelector 的计算过程如左图所示。图中每行相应于算法的一次迭代。阴影长条表示的活动是已选入集合A的活动,而空白长条表示的活动是当前正在检查相容性的活动。
2、最优子结构性质
当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。问题的最优子结构性质是该问题可用动态规划算法或贪心算法求解的关键特征。
3、贪心算法与动态规划算法的差异
贪心算法和动态规划算法都要求问题具有最优子结构性质,这是2类算法的一个共同点。但是,对于具有最优子结构的问题应该选用贪心算法还是动态规划算法求解?是否能用动态规划算法求解的问题也能用贪心算法求解?下面研究2个经典的组合优化问题,并以此说明贪心算法与动态规划算法的主要差别。
0-1背包问题:
      给定n种物品和一个背包。物品i的重量是Wi,其价值为Vi,背包的容量为C。应如何选择装入背包的物品,使得装入背包中物品的总价值最大?
在选择装入背包的物品时,对每种物品i只有2种选择,即装入背包或不装入背包。不能将物品i装入背包多次,也不能只装入部分的物品i
void Knapsack(int n,float M,float v[],float w[],float x[])
{
      Sort(n,v,w);
      int i;
      for (i=1;i<=n;i++) x[i]=0;
      float c=M;
      for (i=1;i<=n;i++) {
          if (w[i]>c) break;
          x[i]=1;
          c-=w[i];
          }
      if (i<=n) x[i]=c/w[i];
}
算法knapsack的主要计算时间在于将各种物品依其单位重量的价值从大到小排序。因此,算法的计算时间上界为
Onlogn)。
为了证明算法的正确性,还必须证明背包问题具有贪心选择性质
对于0-1背包问题,贪心选择之所以不能得到最优解是因为在这种情况下,它无法保证最终能将背包装满,部分闲置的背包空间使每公斤背包空间的价值降低了。事实上,在考虑0-1背包问题时,应比较选择该物品和不选择该物品所导致的最终方案,然后再作出最好选择。由此就导出许多互相重叠的子问题。这正是该问题可用动态规划算法求解的另一重要特征。
        实际上也是如此,动态规划算法的确可以有效地解0-1背包问题。
4.3 最优装载
有一批集装箱要装上一艘载重量为c的轮船。其中集装箱i的重量为Wi。最优装载问题要求确定在装载体积不受限制的情况下,将尽可能多的集装箱装上轮船。
1、算法描述
        最优装载问题可用贪心算法求解。采用重量最轻者先装的贪心选择策略,可产生最优装载问题的最优解。具体算法描述如下页。
template<class Type>
void Loading(int x[],  Type w[], Type c, int n)
{
        int *t = new int [n+1];
        Sort(w, t, n);
        for (int i = 1; i <= n; i++) x[i] = 0;
        for (int i = 1; i <= n && w[t[i]] <= c; i++) {x[t[i]] = 1; c -= w[t[i]];}
}
2、贪心选择性质
      可以证明最优装载问题具有贪心选择性质。
3、最优子结构性质
    最优装载问题具有最优子结构性质。
        由最优装载问题的贪心选择性质和最优子结构性质,容易证明算法loading的正确性。
        算法loading的主要计算量在于将集装箱依其重量从小到大排序,故算法所需的计算时间为 O(nlogn)
4.4 哈夫曼编码
2、构造哈夫曼编码
        哈夫曼提出构造最优前缀码的贪心算法,由此产生的编码方案称为哈夫曼编码
        哈夫曼算法以自底向上的方式构造表示最优前缀码的二叉树T。
        算法以|C|个叶结点开始,执行|C|-1次的“合并”运算后产生最终所要求的树T。
4.5 单源最短路径
给定带权有向图G =(V,E),其中每条边的权是非负实数。另外,还给定V中的一个顶点,称为。现在要计算从源到所有其它各顶点的最短路长度。这里路的长度是指路上各边权之和。这个问题通常称为单源最短路径问题
    1、算法基本思想
        Dijkstra算法是解单源最短路径问题的贪心算法。
基本思想是,设置顶点集合S并不断地作贪心选择来扩充这个集合。一个顶点属于集合S当且仅当从源到该顶点的最短路径长度已知。
        初始时,S中仅含有源。设u是G的某一个顶点,把从源到u且中间只经过S中顶点的路称为从源到u的特殊路径,并用数组dist记录当前每个顶点所对应的最短特殊路径长度。Dijkstra算法每次从V-S中取出具有最短特殊路长度的顶点u,将u添加到S中,同时对数组dist作必要的修改。一旦S包含了所有V中顶点,dist就记录了从源到所有其它顶点之间的最短路径长度。
例如,对右图中的有向图,应用Dijkstra算法计算从源顶点1到其它顶点间最短路径的过程列在下页的表中。
Dijkstra算法的迭代过程:
迭代
S
u
dist[2]
dist[3]
dist[4]
dist[5]
初始
{1}
-
10
maxint
30
100
1
{1,2}
2
10
60
30
100
2
{1,2,4}
4
10
50
30
90
3
{1,2,4,3}
3
10
50
30
60
4
{1,2,4,3,5}
5
10
50
30
60
2、算法的正确性和计算复杂性
(1)贪心选择性质
(2)最优子结构性质
(3)计算复杂性
        对于具有n个顶点和e条边的带权有向图,如果用带权邻接矩阵表示这个图,那么Dijkstra算法的主循环体需要        时间。这个循环需要执行n-1次,所以完成循环需要    时间。算法的其余部分所需要时间不超过      。
最小生成树
设G =(V,E)是无向连通带权图,即一个网络。E中每条边(v,w)的权为c[v][w]。如果G的子图G’是一棵包含G的所有顶点的树,则称G’为G的生成树。生成树上各边权的总和称为该生成树的耗费。在G的所有生成树中,耗费最小的生成树称为G的最小生成树
        网络的最小生成树在实际中有广泛应用。例如,在设计通信网络时,用图的顶点表示城市,用边(v,w)的权c[v][w]表示建立城市v和城市w之间的通信线路所需的费用,则最小生成树就给出了建立通信网络的最经济的方案。
2Prim算法
        设G=(V,E)是连通带权图,V={1,2,…,n}。
        构造G的最小生成树的Prim算法的基本思想是:首先置S={1},然后,只要S是V的真子集,就作如下的贪心选择:选取满足条件iS,jV-S,且c[i][j]最小的边,将顶点j添加到S中。这个过程一直进行到S=V时为止。
        在这个过程中选取到的所有边恰好构成G的一棵最小生成树
用最小生成树性质和数学归纳法容易证明,上述算法中的边集合T始终包含G的某棵最小生成树中的边。因此,在算法结束时,T中的所有边构成G的一棵最小生成树。

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。